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A Fast and Reliable Method for Computer
Analysis of Microwave Mixers

BERND SCHUPPERT

Abstract —TIn this paper, a numerical method is presented for analyzing
microwave mixers. Particular consideration is given to the solution of the
nonlinear pumping problem of real Schottky-barrier diodes. The new
technique has a significantly improved convergence rate, which is demon-
strated by means of direct comparisons with other methods. A convergence
test procedure is proposed and applied which uses randomly generated
harmonic impedances.

The proposed numerical technique for solving the nonlinear and linear
problem is extended to the analysis of balanced mixers. Fabricated planar
balanced mixers are analyzed, both theoretically and experimentally, in a
separate paper.

I. INTRODUCTION

ANY AUTHORS have dealt with the problem of

analyzing a mixer’s behavior since Thorrey and
Whitmer [1] presented their fundamental mixer analysis.
As faster computers are now available, more sophisticated
mixer models have been established.

Even though the application of MESFET preamplifiers
makes the question of the mixer sensitivity less important
in the frequency range up to about 10 GHz, efficient and
reliable design and analysis techniques for millimeter-wave
mixers are still required [2], [3]. Hence, this paper is
intended to contribute to this field by means of presenting
an efficient and reliable numerical technique for solving
the nonlinear mixer problem.

Up to now, single-ended mixers have been preferably
considered, whereas only two papers have dealt with bal-
anced mixers [4], [5]. Due to the fact that the local oscilla-
tor (LO) and signal frequency power levels are of different
orders of magnitude, the analysis of a mixer can be split
into a nonlinear analysis, taking the LO into account, and
a linear analysis, which describes the frequency conversion
between signal and intermediate frequency by means of a
linearized conversion matrix.

The dominant problem of a mixer analysis is the de-
termination of the coefficients of the conversion matrix by
means of a nonlinear analysis. Different numerical tech-
niques have been published [6]-[11] with convergence rates
which differ significantly. In this paper, a modification of
reference [7} will be presented in detail, which has been
described briefly in [11]. The basic idea of this modifica-
tion is to use the effective harmonic impedances of the
diode in determining the successive corrections as the
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solution converges. Using the particular set of harmonic
impedances and diode data as considered in [6], [8], and
[12], the convergence rate is increased by more than a
factor of ten.

The accuracy of predicting a mixer’s behavior by the
proposed numerical technique will be demonstrated by a
comparison of theoretical and experimental results which
will be given in a separate paper [13]. Even though the
noise behavior of a mixer is its most important specifica-
tion, only the conversion loss will be considered here.
However, it can be expected that a numerical technique
which yields an accurate prediction of a mixer’s conversion
loss may simply be extended to a noise characterization as
given in [4].

II. NONLINEAR ANALYSIS

A. Formulating the Problem

Nonlinear devices such as diodes are readily char-
acterized in the time domain by their instantaneous values.
Normally, the embedding network is best described in the
frequency domain by means of harmonic impedances. At
higher frequencies when using distributed elements, it is
impossible to give a lumped-element representation of the
embedding network. Thus, the analysis has to be split-up
into the time and frequency domains as shown in Fig. 1.

The time-domain description is given by

M

duy,
ip=1,(e"/ " —1)+ Cj(ub)‘:ﬁ_

where
C
70
q(uD) = uD Y (2)
-7
Y
G = ol up/Ur
J ( uD) - UTe (3)
and where
C,, barrier capacitance at U, =0V,

Y barrier potential,
Y  exponent,

n ideality factor,

Ur (k-T)/e,

I saturation current.

The frequency-domain requirements due to the embedding
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Fig. 1. Time- and frequency-domain description of a mixer consisting of

a diode and an embedding network.

network are
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where
1 —jrw,t 1 .
Us,=7 ) Cus(1)e e dt=> (U, = jU,)  (5)
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Upn =7 ]0 up(t)e "o dt (6)

are the Fourier-transforms of the existing sources ug(t) |

and the voltage at the reference plane u,(¢), respectively.

The problem to be solved in the time domain is sketched
in Fig. 2 with a mathematical description given by the
differential equation

up(t)\”
dup(t) (“T)
i on
'{(uS(t)+uA(t)_uD(t))/RGEN—Is(euD(t)/nUT—’l)}
§C

where ug(t) represents the existing sources

n o
ug(t) =U,o+ X (Ulk,ycosvat+Uq,sinivat).

(3)

In general, we have only two dominant existing sources

U,0 = Ubiass bias
U, cosw,t =U, first LO harmonic

but the formulation of a set of existing harmonic sources
allows to take higher LO harmonics into account, i.e., if the
LO source voltage waveform is nonsinusoidal.

It should be noted that the impedance R is an arbitrary
time-domain representation of the LO source impedance
and is not identical with Zgyp. The existence of R,
provides a limitation of the current flow at all LO har-
monics.

The quantity u A(t) represents auxiliary sources as intro-
duced by Gwarek [7], which are intended to balance the
harmonic impedances at the impedance reference plane in
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Fig. 2. Time-domain formulation of the nonlinear problem.
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such a way that the circuit to the left of the reference plane
(Fig. 2) is indistinguishable from the embedding circuit on
the left of the reference plane in Fig, 1:

. 1
ug (1) =Uyp+ Y (U, cosrw,t + U, sinvw,t).
v=1 .

()

Establishing auxiliary sources even for average and the first
harmonic allows R gy to be arbitrary, i.e., purely resistive
in order to simplify the mathematical description.

It is now necessary to determine the auxiliary sources
satisfying the impedance conditions of (4) in the frequency
domain. Due to the fact, that the nonlinear element acts as
an harmonic generator, no closed-form solution of  this
problem is available, and the steady state of this network
has to be calculated iteratively over a number of LO
periods. Following Gwarek and allowing R gy to become
a complex quantity, the change of the auxiliary source of
the vth harmonic to be used in the k-th iteration is given
by ‘

77 p(k—1

A_U,f ) = léu )'ZEMB(pr)
if the current remains constant, and by
Zoen (7 ‘*’p)

.Z_EMB(”“’p)

~U§ "V +Us,

(10)

{1879 Zouw(vw,) ~ USE D + U, }

(11)

AU =

if the voltage remains constant.

These conditions imply that the diode acts either as an
ideal current generator (10) or as an ideal voltage generator
(11) at the »th harmonic. It is obvious that in practice this
is not the case, leading to convergence problems for many
practical harmonic impedances.

The' auxiliary sources for the kth iteration perlod are
given by

k
U, =23 Re{AU"} (12)
L=1

(13)
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B. Modification of the Nonlinear Analysis

The idea of the modification is to take into account the
harmonic generation of the diode in each LO period and to
classify it by its source impedance at each harmonic.

First, (10) and (11) should be rewritten in the following
form, where we introduce subscript i for i=const and
subscript u for u = const:

A_Ut(yk) = _Ig;‘l)'ZEMB(pr) —-UgY +Ug,

ZGEN(pr) . (k)

AULY = U/
ZEMB(pr)

U,, (15)
Knowing the source impedance of the harmonic generator,
Zp(vw,) to be defined below, the change of the auxiliary
source at the rth harmonic may be written in terms of a
change due to /= const and a change due to « = const,
leading to

ZGEN(pr) Fre
Zoww(r,) E( p)}- (16)

For specific values of Z, the functions F, and F, must
satisfy the following conditions:

-0

AUR = Agff>{£1(vw,,)+

<1 (u=const.)
1 £ _.Z_D(pr)
F =— P =
__l(ywp) 2 or ZEMB(pr) 1
>1 (i=const.)
-1
(17)
—0 <1 (i=const.)
F 1 f ZD(pr)
Bve,) 2 ZEMB(V“’p) -1
) <1 (u=const.)

(18)
It can be easily verified that these conditions are fulfilled
by choosing

Zp(ve,)
ZD(pr) + ZEMB(pr)
Zpvp(rw,)

ZD(pr) + ZEMB(”“’p)
so that (16) can be written as
Zék)( pr) + ZGEN(pr)

AU = =
- Zg()(”“’p)‘*'ZEMB(pr)

fl(va) = (19)

-E2(pr) = (20)

) { 15 DZEMB(”""])) - Qz()lf;_l) +Us, } . (21

Note that (21) is equivalent to (10) and (11) when Z,(vw,)
— o0 (i=const) and when Z,(vw,) =0 (u= const), re-
spectively.

The remaining problem is to give an expression for the
source impedance Z,(rw,).

In the case of a small-signal problem, the source imped-
ance of the diode at the kth iteration period is simply
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Fig. 3. Time-domain description, when the diode’s parasitics are in-

cluded in the nonlinear problem.

given by the small-signal conductance and capacitance of
the previously calculated period

1
(k) _
Zp (pr) = Gék_1)+jvac(§k_1) (22)
where
G("_D=ifTG (1) di = I /Teug—n(z)/n-urdt (23)
0 TV nUr-T Yo
1 .7 Co cr[. USF D))"
C(k‘—l):‘__ C(: dt:__i_ ] — dr.
0 Tfo /() T Yo 1%

(24)

As G, and C, are the zeroth Fourier coefficients of G, ()
and C(t), a FFT algorithm can be used to compute these
coefficients.

It will be shown below by comparing the convergence of
different numerical techniques, that this equation, derived
from a small-signal analysis, can be used successfully even
in the case of the large-signal analysis.

It is obvious, that the small-signal values of (23) and (24)
are valid rigorously only for an operating point that re-
mains constant. Hence, the most critical case is a strong
change of the operating point during the iteration proce-
dure. In this case, it is advantageous to determine the
auxiliary source U, together with U, and U,, first, and
then to start determining all harmonic sources together. A
strong change of the operating point implies that we are
dealing with one of the limiting cases of (10) and (11);
thus, the starting procedure for adjusting U, makes use of
these equations.

C. Refining the Numerical Technique

When formulating the nonlinear problem in the time
domain, it is simplest to use the barrier of the diode instead
of the diode’s outer terminals as a junction plane between
the time and frequency domains. The reason for this is the
reduction of the order of the differential equation in the
time domain. In this case, the parasitic elements of the
diode, as shown in Fig. 3, are included in the embedding
impedances of the frequency-domain description.
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Considering all parasitic elements of the diode in the
time-domain analysis, the order of the differential equation
increases from 1 to 3, and an increase of calculation time
can be assumed.

This might be the reason for the fact that all the authors
who have dealt with a nonlinear mixer analysis incorporat-
ing harmonic balance techniques have included the diode’s
parasitics into the frequency-domain description. On the
other hand, the signal at the diode’s outer terminals is more
band-limited due to the low-pass character of the parasitic
circuitry. Hence, we expect a reduction of the aliasing error
of the FFT when the parasitic elements are included in the
time-domain part of the circuit, as shown in Fig. 3.

If Zspn is chosen to be purely resistive, a system of
differential equations is obtained as follows:

-0
duug)(t) _ C‘P {iD(t)—Is(eus’k)(‘t)/"Ur—l)}
t 0
(25)
fﬁé%%ﬁfz, 1 {u(k’ )= uf(t)— Rg-i(1)}.  (26)
du'®
7@ = _Cl;{(us(t)+ ulY(1)
_u(k)(t))/RGEN_l(Dk)(t)} (27)

where ug(r) is given by (8). The time-domain representa-
tion of the auxiliary source u{*~ V() is given by (9) with
the frequency-domain descnpuons according to (12), (13),
and (21) and can be calculated as an inverse Fourier
transform. In general, it is advantageous to reduce the
bandwidth of the inverse Fourier transform through
smoothing by means of a cubic spline interpolation; the
increase of computing time is negligible.

In order to compare the computing time requirements of
both of the time-domain formulations according to Figs. 1
and 3, the following situation will be considered. The diode
is chosen to be a typical beam-lead Si Schottky-barrier
diode for microwave applications

I.=0510"7A; 7=1.08; y=0.5; ¢y=0.6V;
C, = 0.25 pF;

Cp=0.1pF; L,=01nH; Rg=25%;

Uy =0.026 V.

The even-harmonic impedances are assumed to be

1 2
ZEMB(zV‘*’p) = ; 50 @, k= {5 (28)
and the odd-harmonic impedances are assumed to be
2
Zew[@r -1, =pes00, w={2 (29)

and the source impedance has been chosen to be Zggy =
R e = 50 Q. It should be pointed out that the impedance
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Fig. 4. Computing time requirements against the number of adjusted
harmonics for an LO power range from 0 dBm to +10 dBm in steps of
1 dB. The embedding network is given by (28) and (29). Xx: diode’s
parasitics in time-domain analysis. ©: diode’s parasitics in frequency-
domain analysis.

situation according to p =2 typically occurs in balanced
mixer configurations at low frequencies.

Let us consider the LO power to be varied between 0
dBm and + 10 dBm in steps of 1 dB, which is a typical LO
drive range when dealing with silicon Schottky-barrier
diodes of a medium barrier height. The pump frequency is
chosen to be f, =5 GHz.

The adjustment of the harmonic impedances is truncated
and the solution is accepted if the mean harmonic imped-
ance error is

e .001 0
e= n+1 g e,<0.00 (30)
where
' Us, —Up,
e,=1- —= =2 |, (31)
_[DV'ZEMB(pr)

In Fig. 4, the required computing time on a CYBER
170-835 is plotted against the number of harmonics being
adjusted. If the diode’s parasitics are included in the time-
domain description (Fig. 3), the computing time increases
slightly with increasing p and an increasing number of
harmonics being adjusted.

If the diode barrier is chosen to be the impedance
reference plane (Fig. 1), a stronger increase of computing
time is recognizable, leading to divergence in the cases

p=2v>14 and p=S5;r>7.

It should be pointed out that, when the diode parasitics are
considered part of the frequency-domain circuit, the con-
vergence decreases much more rapidly if the above-men-
tioned cubic sline interpolation is not applied, whereas its
influence is only slight when the diode’s parasitics are
included in the time-domain analysis.

As a result, it has been demonstrated for two sets of
embedding impedances that including the diode’s parasitics
in the time-domain analysis leads to a more efficient and
reliable numerical technique than including them in the
frequency-domain analysis, even though the order of the
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differential equation set is increased. This is due to the fact
that we deal with a more band-limited signal at the junc-
tion plane between the time and frequency domains when
including the parasitics into the time-domain description.

The difference between the two formulations becomes
more pronounced with increasing the number of harmonics
and with increasing the complexity of the embedding net-
work.

Finally, some comments will be made on the choice of
Zsen- As mentioned above, the choice of Zsgy is arbitrary
if auxiliary sources are established for all harmonics, in-
cluding the average and first harmonics. If Zggy 1s chosen
to be the lumped-element representation of the impedance
at the first harmonic, then the auxiliary sources U, and U,
are dispensable. In case of a positive reactance of Zpyp(w,),
the lumped-element representation has to be chosen as a
series connection of Lgpy and Rgpyn. and in case of a
negative reactance of Zgyp(w,), the lumped-element repre-
sentation has to be chosen as a parallel connection of Gggy
and Cggy. For these two cases, the time-domain differen-
tial equation sets are different.

It wiil be shown in Section III that the increased compu-
tational complexity yields an increased convergence rate.
Hence, the choice of Z;py as the lumped-element repre-
sentation of the embedding network at the fundamental is
a useful initial guess for solving the nonlinear problem.

In case of a nonconvergent solution, it might be advanta-
geous to make use of this degree of freedom by choosing a
value of Z;gy which leads to convergence.

A flow chart of the numerical nonlinear analysis is given
in Fig. 5.

III. CoONVERGENCE CONSIDERATIONS

This section is intended to provide a comparison of the
reliability and speed of different numerical techniques for
solving the nonlinear problem.

First, a comparison is given using Kerr’s data [6], which
have also been used in [8] and [12]. Particular attention is
given to the influence of the LO drive level. Then a more
general comparison is made between the different tech-
niques using harmonic impedance sets created by a ran-
dom generator.

A. Convergence Comparison Using Kerr’s Data

Kerr [6] has defined a convergence condition

U, —U,,
(:L _ . Sv ~D
IDV‘ZEMB(V%)

which must be equal to unity for a converged solution for
all ». Using (32), a convergence diagram has been obtained
for his technique, showing the convergence condition as a
function of the harmonic number after 100 iterations and
300 iterations, respectively (see Fig. 6(a)). Hicks and Khan
[8] took up this diagram in order to compare their voltage
update method with Kerr’s method (Fig. 6(b)). Although
the convergence is improved slightly by using a conver-
gence parameter p, the computation time is of the same
order of magpitude as Kerr’s method. However, the opti-
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Fig. 5. Flow chart of the applied numerical technique.

mum convergence parameter ( p = 0.025 in this case) is not
given by an analytical expression but has to be found by
some trials, which is not satisfying when analyzing an
unknown nonlinear circuit.

In order to give a comparison with the method presented
in this paper, Fig. 6(c) shows the convergence conditions
after 10 and 15 iterations, according to the numerical
technique of Section II. A rather similar diagram has been
obtained when the junction capacitance is allowed to vary
with the junction voltage (Fig. 6(d)), which is the most

ealistic but critical case when dealing with microwave
aixers incorporating Schottky-barrier diodes.

Assuming convergence if the convergence condition

1-C,<0.5%, v=0---16 (33)
is fulfilled, Kerr’s method requires about 500 iteration
periods compared with 350 iteration periods of the Hicks
and Khan approach. The technique presented here requires
20 iterations in the case of C, = const and 22 iterations if C,
is varying with the junction voltage.

It is noticeable that convergence is improved by a factor
of ten or more even in the case of a voltage-dependent
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Fig. 6. Convergence diagrams using Kerr’s data [6]. (a) Kerr [6]; 100
and 300 iteration periods. (b) Hicks and Khan [8]; 200 and 300 iteration
periods. (c) This method; C, = const, 10 and 15 iteration periods. (d)
This method; C; = C,(up); 10 and 15 iteration periods.

junction capacitance. The results of Fig. 6 ignore the
important influence of the LO drive level on the conver-
gence rate. In Fig. 7, which is taken from [12], the number
of iterations is plotted against the dc diode current, which
is an inherent function of the LO drive level. If we assume
the bias voltage is adjusted to give an angle of current flow
6 =90°, then the available LO power is approximately
given by the additionally noted abscissa values in Fig. 7. It
should be noted that the angle of current flow does not
differ so much from the assumed value of 8= 90°, espe-
cially in the LO power range of interest. Hence, the ad-
ditionally noted abscissa values give a good approximation
of the available LO power which is necessary to achieve the
dc current values given in Fig. 7. It can be seen that the
methods described in [8] and [12] show a strongly de-
creased convergence rate in the LO drive range of interest
" (> 0 dBm), whereas the proposed method offers a conver-
gence rate which is nearly independent of the LO drive.
However, it should be mentioned that the convergence
behavior in general depends on the embedding circuitry as
well as on the LO power. A more general consideration of
this problem is given in Section III-B.
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This method.

B. Convergence Comparison Using Randomly Generated
Impedance Data

Due to the fact that practical mixer circuits have a wide
range of harmonic embedding impedances, a more general
convergence comparison will be given here. Let

0 < {rand 1,rand2} <1 (34)

be two independent random numbers. Then we can define
a reflection coefficient

r = [rand 1|e/27 12042, (35)
If a mixer shall be applied in a 50-£ system, we can assume
that every complex reflection coefficient of a 50- system
has the same probability, and we can define a correspond-
ing set of random impedances

1+r
Z=SOITI[Q]. (36)

Let us restrict the number of harmonics to be within

(37)

which is sufficiently high for the analysis of a real micro-
wave mixer. Now we can calculate any number of harmonic
impedances and take them for a convergence test. For a
particular initiation of both of the random generators, 430
sets of harmonic impedance values have been obtained, as
shown in Fig. 8, yielding 2150 different impedance values
according to (37).

All the following considerations assume the LO voltage
source to be a constant value of u, =2 V according to an
available LO power of +10 dBm if the source impedance
would be Zgyp(w,) =50 . But as the source impedance
at the first harmonic Zgyp(w,) is also randomly generated,
in fact a wide LO drive range is applied to the diode.

Convergence is assumed if the mean impedance error of
the harmonics » =0 - - - 4 given by (30) is e < 0.005.

Three different numerical techniques will be treated here
in order to compare their rate of convergence.

The first technique is the voltage update method pro-
posed by Hicks and Khan [8]. The lack of an analytical

O0<sr<4
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Fig. 8. 430 sets of randomly generated harmonic impedances.

expression for determining the convergence parameter p
requires excessive computer time if a wide range of p is
taken into consideration. In practice, p is varied between

(38)

for each harmonic impedance set. If the required number
of iterations is taken only for the optimum value of p
(found by trial), we get a histogram of iteration periods as
given in Fig. 9(a).

The second method under consideration is that proposed
by Gwarek [7], which has been described briefly in Section
II. Using his equations for determining the auxiliary sources
(egs. (10) and (11)), a histogram of iteration periods is
obtained as given in Fig. 9(b).

Although the rate of convergence is poor (about 60
percent), the mean value of required iteration periods is
decreased compared with Hicks” and Khan’s method. But
it is important to remember that no trials have to be made
in order to find an optimum convergence parameter.

The third method which shall be considered here in
depth is that proposed in this paper. Particular attention
will be paid to the choice of the source impedance Z;gy as
mentioned in Section 11-C. '

If we choose Z ., to be the lumped-element representa-
tion of Zgyp(w,), a histogram is obtained as given in Fig.
9(c). In the case of choosing a purely resistive Zgpy =
50 2, we get the histogram of Fig. 9(d). Comparing both of
these histograms, it can be seen that choosing Zgpy to be
the lumped-element representation of the embedding net-
work at the fundamental yields a significantly increased
‘convergence rate. ;

Remembering the fact that we have an additional degree
of freedom in choosing Zggy When analyzing an unknown
nonlinear circuit, the question arises whether its choice can
lead to an increased convergence rate in general. The

002<p<l
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Fig. 9. Histograms of required iteration periods. (a) Hicks and Khan [8],
various convergence parameters, optimum determined by trial. (b)
Gwarek [7]. (¢) This method, Z;gy = ZEMB(wp) (lumped-element rep-
resentation of the embedding network at the fundamental).

histogram of Fig. 9(e) is obtained if we use both source
impedance cases alternatively and choose the fastest. Con-
vergence now occurs in 99 percent of cases.

Comparing the histograms of Fig. 9(c) (this method) and
Fig. 9(a) (Hicks and Khan), we have to remember that Fig.
9(a) is obtained by varying the convergence parameter in a
wide range and choosing the optimum value for each
harmonic impedance set. In other words, the presented
histogram of Fig. 9(a) would be obtained without trial if an
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Fig, 9 (cont.) (d) This method, purely resistive Zsen =50 Q. (e) Using
the fastest of (c) and (d).

il

analytic expression for the convergence parameter would
be available. Hence; the histogram of Fig. 9(a) has to be
interpreted as an optimistic presentation of the conver-
gence behavior of this method.

Comparing the histograms of Fig. 9(c) (this method) and
Fig. 9(b) (Gwarek), it has been demonstrated that includ-
ing an effective diode impedance at each harmonic when
determining the. auxiliary sources (16)—(24) leads to a
significantly improved convetgence in general.

The results of this chapter are summarized in Table I,
where the percentage of divergence as well as the mean
value of required iteration periods is given for the methods
under consideration.

In conclusion, it should be pointed out that the proposed
numerical technique is very efficient and reliable. If a
larger number of harmonics is taken into account, the
advantage of this method is much greater. This is because
the magnitude of higher harmonics generated by the diode
decreases and, hence, the small-signal conditions of (23)
and (24) are increasingly fulfilled with an increasing num-
ber of harmonics.
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TABLEI
method histogram divergent mean value of
, required iteration periods

Hicks—Khan Fig. 9(a) 17% 99.1
Gwarek Fig. 9(b) 43% 39.6
This Method
Zgen = Zpmp(w,)  Fig. 9(0) 5% 247
Zoim =50 © Fig. 9(d)  10% 23.9
Choosing the fastest . -

of 9(c) and 9(d)  Fig. 9(e), 1% 19.1

IV. LINEAR ANALYSIS

Having determined the voltage waveform at the diode’s
barrier, the instantaneous values of the differential conduc-
tance and capacitance can be calculated by (2) and (3)
leading to their Fourier transforms through

1 ,r iy
G,;;fo G, (t)e e dt .(39)

1 T —juw,t . 4
\c,;;fo C,(1)e s dr. (40)

When formulating the linearized problem by means of an:

-admittance matrix

sum— | I, e Yy Y, Y, Y, X, U,
signal — | 41 Y Y Y ¥ L2
IF - I | = L YN Y X -1 Uy
image — | /_, DA S S R & U_,
1, r w n oy v,
, . (41)
which can be expressed as
+ o0
L,= Y Y,.U, (42)
p=—00
where the according frequencies are ‘
fm=|m‘fp+fIFi" (43)

The coefficients of this conversion matrix can be calculated
from the Fourier transforms of G; and C; as follows:

Y, .= Re{Qm—-[L} —(me, + wo)lm‘{gm_ﬂ}
+j[m (G, ,} +(ma,+w)Re{C,_,}. (44)

If we choose a description of the linearized problem through
an m X m- matrix, this matrix can be reduced to a 2X2
matrix if the impedance relations at m —2 mixing products

are given by (45)

where Y, represents the load admittance at the mth
mixing product (see Fig. 10). Then the power flow between
any of the mixing products can be calculated for a funda-
mental or subharmonically pumped mixer. The only dif-
ference between these two cases is the, succession of the
matrix reduction, arranged by an exchange of rows and
columns of the conversion matrix. Depending on the

L,=—Y . u,
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MATRIX " REDUCTION
=d
L= Y, I, L
\ L\ [y Y \[Yh 1
v VY, .—
b 16': ' [—. (10),(’2‘ Yn)(uo) ._l ¢ ‘sz Yl(n
signal port IF port
Fig. 10. Linearized problem: reduction of the frequency multiport to a

2-port.

matching conditions at the input and/or output port,
different conversion losses can be defined.

If no matching takes place, the transducer conversion
loss can be calculated, given by '

N power available from signal source

¢

power delivered to IF load

|( Ju +Z(1))(!22 + Y(z)) - 2’12'2’21|2

© 4Re(Yy ) Re{Yp ) lyul’

where the y,; represent the coefficients of the reduced 2x 2
conversion matrix, Y, is the signal source impedance, and
Y, is the IF load impedance (see Fig. 10).

Other conversion losses can simply be calculated from
the coefficients of the 2 X2 conversion matrix but will not
be considered here.

(46)

V. PARTICULARITIES OF BALANCED MIXER
ANALYSIS

In the analysis of a balanced mixer, it is advantageous to
make use of its symmetry properties if we assume the
diodes to be identical. The influence on the nonlinear and
linear mixer analysis will be regarded separately. It will be
shown that a balanced mixer can be treated as a single
diode mixer as previously considered in [4]. In the nonlin-
ear analysis, the impedance conditions given by the embed-
ding network have to be rearranged. The linearized prob-
lem can be solved by a simple change of the coefficients of
the conversion matrix.
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Fig. 11. Basic equivalent circuit of a balanced mixer, considering the

nonlinear problem.

A. Nonlinear Analysis of Balanced Mixers

Let us consider an equivalent circuit of a balanced mixer
as sketched in Fig. 11. Due to the opposite polarity of the
diodes, we have

in(wpt) =-—i1(wpt+'rr). (47)
Expressing i, and i, in terms of Fourier series yields
+ o0
iawp) =2 Y Ipeet (48)
2 v=-—co
+ o0
iB(wpt) =5 Z 211(2u—1)ej(2y_1)w”t (49)

where i, and iy are formulated only to be a function of
the current through diode 1. »
Expressing u, and u, in terms of Fourier series yields
+ o0
”A(“’pt) == L 2pere (50)
2 V=00
+ 00

“B(“’pt)=5 Z QI(ZV—I)ej(ZP_prt'
0

p=-—

(51)

Calculating the impedances seen by only one diode, we get
in case of the odd harmonics

U; U
Yigr-1 Y B@r-1)
T =2 = e[ -De,]  (52)
£I1(2»—1) £B(2»—-1)

and in case of the even harmonics

l—]IZV 1 QA2)' 1

=——"—=-7 2
In, 21, 2 Zows( pr) (53

so we can approach the nonlinear problem by considering
only one diode, with embedding impedances at the diode
plane given by (52) and (53). Note that these impedances
are at a virtual impedance reference plane and do not exist
physically.

B. Linear Analysis of Balanced Mixers

The basic circuitry of Fig. 11 has to be rearranged for
the small-signal case considered in this section. Both the
diodes are to be replaced by their time-varying admittances
as shown in Fig. 12. The time-varying admittances do
contain the solution of the nonlinear problem as given by
the diode’s nonlinearities and the harmonic impedances.

It can easily be verified that the mixing products are
split up in such a way that the even mixing products
m=2n appear at port B, whereas port A only contains



SCHUPPERT: COMPUTER ANALYSIS OF MICROWAVE MIXERS
ai, 11 aip ylwh
au,
- O——¢
o

| .y
Al yltem

Fig. 12. Basic equivalent circuit of a balanced mixer, considering the
linearized problem.

odd mixing products (m=2n—-1). Due to the voltage
‘'splitting at port A and the current splitting at port B, (41)
can be written as ’

1 Do Do u,
2 Y, Y, Y, Y, ¥, 1,
]_1 Tt Xl* Yo Xl Xz _Z3 2"1
iy | T Xz* Zl* Yo Xl Xz Qo
!24 R D A A AR 4 1,
] DANED D Cull A A 2=t
L 2o v,

voltage splitting
at port A

current splitting

at port B (54)

Including the factors 1/2 into the conversion matrix yields

: 2w, ¥, 2, Y, 2,
port B !2 Yl* v _):‘Z Y1 é X3
port A Vi - 2 - 2
portB | Lo [ =|-- 2L ¥ 2% Y, 2Y,
portA |1 4 yx Z_z* v* é y
portB |1, =3 2. 2 !

: P2 AR) S (U O

ST

(55)

BEES
UL

This final formulation is valid at both of the mixer ports (A
and B) where the conversion matrix is given by the Fourier
coefficients of a single diode, but describing the frequency
conversion of a balanced mixer.

VL

An improved method of analysis of microwave mixers
has been presented, which includes an efficient and reliable
numerical technique for solving the nonlinear pumping

CONCLUSION
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problem. Single-ended and balanced mixers are considered.
The efficiency and reliability of convergence has been
demonstrated by comparing the proposed method with
those which have been published previously.
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