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A Fast and Reliable Method for Computer
Analysis of Microwave Mixers

BERND SCHUPPERT

Abstract —Irr this paper, a numerical method is presented for analyzing

microwave mixers. Particular consideration is given to the solution of the

nonlinear pumping problem of real Schottky-bamier diodes. The new

technique has a significantly improved convergence rate, which is demon-

strated by means of direct comparisons with other methods. A convergence

test procedure is proposed and appfied which uses randomly generated

harmonic impedances.

The proposed numerical technique for solving the nonlinear and linear

problem is extended to the analysis of balanced mixers. Fabricated planar

balanced mixers are analyzed, both theoretically and experimentally, in a

separate paper.

I. INTRODUCTION

M ANY AUTHORS have dealt with the problem of

analyzing a mixer’s behavior since Thorrey and

Whitmer [1] presented their fundamental mixer analysis.

As faster computers are now available, more sophisticated

mixer models have been established.

Even though the application of MESFET preamplifiers

makes the question of the mixer sensitivity less important

in the frequency range up to about 10 GHz, efficient and

reliable design and analysis techniques for millimeter-wave

mixers are still required [2], [3]. Hence, this paper is

intended to contribute to this field by means of presenting

an efficient and reliable numerical technique for solving

the nonlinear mixer problem.

Up to now, single-ended mixers have been preferably

considered, whereas only two papers have dealt with bal-

anced mixers [4], [5]. Due to the fact that the local oscilla-

tor (LO) and signal frequency power levels are of different

orders of magnitude, the analysis of a mixer can be split

into a nonlinear analysis, taking the LO into account, and

a linear analysis, which describes the frequency conversion

between signal and intermediate frequency by means of a

linearized conversion matrix.

The dominant problem of a mixer analysis is the de-

termination of the coefficients of the conversion matrix by

means of a nonlinear analysis. Different numerical tech-

niques have been published [6]–[11] with convergence rates

which differ significantly. In this paper, a modification of

reference [7] will be presented in detail, which has been

described briefly in [11]. The basic idea of this modifica-

tion is to use the effective harmonic impedances of the

diode in determining the successive corrections as the
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solution converges. Using the particular set of harmonic

impedances and diode data as considered in [6], [8], and

[12], the convergence rate is increased by more than a
factor of ten.

The accuracy of predicting a mixer’s behavior by the

proposed numerical technique will be demonstrated by a

comparison of theoretical and experimental results which

will be given in a separate paper [13]. Even though the

noise behavior of a mixer is its most important specifica-

tion, only the conversion loss will be considered here.

However, it can be expected that a numerical technique

which yields an accurate prediction of a mixer’s conversion

loss may simply be extended to a noise characterization as

given in [4].

II. NONLINEAR ANALYSIS

A. Formulating the Problem

Nonlinear devices such as diodes are readily char-

acterized in the time domain by their instantaneous values.

Normally, the embedding network is best described in the

frequency domain by means of harmonic impedances. At

higher frequencies when using distributed elements, it is

impossible to give a lumped-element representation of the

embedding network. Thus, the analysis has to be split-up

into the time and frequency domains as shown in Fig. 1.

The time-domain description is given by

du~
i~=I, (e U”/qu’–l)+C, (zf~)~

where

Is
G,(u~) = _.._euD/WT

‘7).UT

(1)

(2)

(3)

and where

CJO barrier capacitance at U~ = O V,

+ barrier potential,

Y exponent,

v ideality factor,

UT (k T)/e,

Is saturation current.

The frequency-domain requirements due to the embedding
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Fig. 1. Time- and frequency-domain description of a mixer consisting of

a diode and an embedding network.

network are

~sv – %
~D =

‘ zEMB(J’@p)

(4)

where

are the Fourier-transforms of the existing sources us(t)

and the voltage at the reference plane u~(t ), respectively.

The problem to be solved in the time domain is sketched

in Fig. 2 with a mathematical description given by the

differential equation

()

uD(t) 7

duD(t) 1– ~
— .

dt q..

“{ (uS(~)+~A(~)-~D( ~))/RGEN-]$(euD(f)/qu’-l) )
(7)

where us(t) represents the existing sources

us(t) = UPO+ ~ (UPVcosvcoPt + U~UsinvuPt). (8)
“=1

In general, we have only two dominant existing sources

Upo= Ubia., bias

UP1Cos Lopt= up , first LO harmonic

but the formulation of a set of existing harmonic sources

allows to take higher LO harmonics into account, i.e., if the

LO source voltage waveform is nonsinusoidal.

It should be noted that the impedance R ~ is an arbitrary

time-domain representation of the LO source impedance

and is not identical with Z~~~. The existence of R ~

provides a limitation of the current flow at all LO har-

monics.

The quantity u~(t) represents auxiliary sources as intro-

duced by Gwarek [7], which are intended to balance the

harmonic impedances at the impedance reference plane in

111
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Fig. 2. Time-domain formulation of tbe nonlinear problem.

such a way that the circuit to the left of the reference plane

(Fig. 2) is indistinguishable from the embedding circuit on

the left of the reference plane in Fig. 1:

u~(t) = Uoo+ ~ (U. PcosvqJ + U~PsinvuPt). (9)
~=1

Establishing auxiliary sources even for average and the first

harmonic allows R GEN tobe arbitrary, i.e., purely resistive
in order to simplify the mathematical description.

It is now necessary to determine the auxiliary sources

satisfying the impedance conditions of (4) in the frequency

domain. Due to the fact, that the nonlinear element acts as

an harmonic generator, no closed-form solution of this

problem is available, and the steady state of this network

has ‘to be calculated iteratively over a number of LO

periods. Following Gwarek and allowing R G~N to become

a complex quantity, the change of the auxiliary source of

the v th harmonic to be used in the k-th iteration is given

by

if the current remains constant, and by

Au(,)= ~@N(v”%){~,~-l).~EMB(v@p)-~~$-l)+u }
—.-v

ZEMB(v@p) ‘D”
—Sv

(11)

if the voltage remains constant.

These conditions imply that the diode acts either as an

ideal current generator (10) or as an ideal voltage generator

(11) at the vth harmonic. It is obvious that in practice this

is not the case, leading to convergence problems for many

practical harmonic impedances.

The auxiliary sources for the k th iteration period are

given by

(12)

L=l

~~V=–2 ~ Im{AUjL)}. (13)
L=l
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B. Modification of the Nonlinear Analysis

The idea of the modification is to take into account the

harmonic generation of the diode in each LO period and to

classify it by its source impedance at each harmonic.

First, (10) and (11) should be rewritten in the following

form, where we introduce subscript i for i = const and

subscript u for u = const:

A~~f) = &l).& ~(vuP) – @-l) + &

Au(.) = am(%)
—Uv ~EMB(v@p) “w!’). (15)

Knowing the source impedance of the harmonic generator,

Z~( VUP) to be defined below, the change of the auxiliary

source at the v th harmonic may be written in terms of a

change due to i = const and a change due to u = const,

leading to

For specific values of Z~, the functions FI and Fz must

satisfy the following conditions:

F—1 [

+0

{

<1 (u= const.)
1 ~D(vup)

V@D) =; for
Z,M,(v@p) ‘1

>>1 (i= const.)

~D(vop)

Z-EMB(v@p)

(17)

(
<<1 (i= const.)

\

=1

<1 (u= const.)

It can be easily verified that these conditions

by choosing -

~D(vop)

()

f’l(v~p) = ~D(VUp)+ZEMB ‘UP

ZJ3M*(v@P)

()

~2(v0P) = ~D(V@P)+ZEMB ‘@P

so that (16) can be written as

z(@(vup)+~GEN (vup)

(Vtip)
@k) = ~~k)(vup)+~EMB

(18)

are fulfilled

(19)

(20)

“(I(k-l)~EMB(VCJP.Dv )-@l) +Q}. (21)

Note that (21) is equivalent to (10) and (11) when ZD(VQP)

~ m (i = const) and when ZJvtiP) ~ O ( u = const), re-

spectively.

The remaining problem is to give an expression for the

source impedance ZD ( Vup ).

In the case of a small-signal problem, the source imped-

ance of the diode at the k th iteration period is simply

FREWENCY DOMAIN
!
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Fig. 3. Time-domain description, when the diode’s parasitic are in-
cluded in the nonlinear problem.

given by the small-signal conductance and capacitance of

the previously calculated period

1
(22)z(k)(vup) = ~fk-l~ + jvcdpco

—D (k-1)

where

Gfk-l’= ;~TG,(t)dt=--&~Teug-l)(’)’q”urdt (23)

lT
J () /(

Ujk-l)(t) y
~$k-1) = _ CJt dt=~ ‘l–

TO TO )

dt .
+

(24)

As Go and Co are the zeroth Fourier coefficients of GJ( t)

and C,(t), a FFT algorithm can be used to compute these

coefficients.

It will be shown below by comparing the convergence of

different numerical techniques, that this equation, derived

from a small-signal analysis, can be used successfully even

in the case of the large-signal analysis.

It is obvious, that the small-signal values of (23) and (24)

are valid rigorously only for an operating point that re-

mains constant. Hence, the most critical case is a strong

change of the operating point during the iteration proce-

dure. In this case, it is advantageous to determine the

auxiliary source U.. together with Ual and U~l first, and

then to start determining all harmonic sources together. A

strong change of the operating point implies that we are

dealing with one of the limiting cases of (10) and (11);

thus, the starting procedure for adjusting U.. makes use of

these equations.

C. Refining the Numerical Technique

When formulating the nonlinear problem in the time

domain, it is simplest to use the barrier of the diode instead

of the diode’s outer terminals as a junction plane between

the time and frequency domains. The reason for this is the

reduction of the order of the differential equation in the

time domain. In this case, the parasitic elements of the

diode, as shown in Fig. 3, are included in the embedding

impedances of the frequency-domain description.
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Considering all parasitic elements of the diode in the

time-domain analysis, the order of the differential equation

increases from 1 to 3, and an increase of calculation time

can be assumed.

This might be the reason for the fact that all the authors

who have dealt with a nonlinear mixer analysis incorporat-

ing harmonic balance techniques have included the diode’s

parasitic into the frequency-domain description. On the

other hand, the signal at the diode’s outer terminals is more

band-limited. due to the low-pass, character of the parasitic

circuitry. Hence, we expect a reduction of the aliasing error

of the FFT when the parasitic elements are included in the

time-domain part of the circuit, as shown in Fig. 3.

If ~GEN is chosen to be purely resistive, a system of

differential equations is obtained as follows:

()Z.&’(t)
l–—

duu~k)(t)

dt =
~: ‘{iD(t)_l,(euL’’fl)/qu, _l))

Jo

(25)

di~)(t) 1

dt
= ~{u’k)(t)- u~J(t)- R~.i\’)(t)}. (26)

s

du(k)(t) 1

dt =~{(%(t)+uj’-’)(t)
P

(27)– u(k)(t))/~@JN– i~k)(t)}

where uS( t) is given by (8). The time-domain representa-

tion of the auxiliary source u~k- 1)(t) is given by (9) with

the frequency-domain descriptions according to (12), (13),

and (21) and can be calculated as an inverse Fourier

transform. In general, it is advantageous to reduce the

bandwidth of the inverse Fourier transform through

smoothing by means of a cubic spline interpolation; the

increase of computing time is negligible.

In order to compare the computing time requirements of

both of the time-domain formulations according to Figs. 1

and 3, the following situation will be considered. The diode

is chosen to be a typical beam-lead Si Schottky-barrier

diode for microwave applications

I,=0.510-7A; q=l.08; y= O.5; +=0.6V;

~.= 0.25 pF;

CP=O.l pF; Ls=O.1 nH; RS=2.5 !J;

U,= 0.026 V,

The even-harmonic impedances are assumed to be

ZEMF3(2vop)=~ “50‘~ {
p= ; (28)

and the odd-harmonic impedances are assumed to be

and the source impedance has been chosen to be ~GpN =

R ~~~ = 50 G?.It should be pointed out that the impedance
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Fig. 4. Computing time requirements against the number of adjusted

harmonics for an LO power range from O dBm to +10 dBm in steps of
1 dB. The embedding network is given by (28) and (29), X: diode’s

parasitic in time-domain analysis. 0: diode’s parasitic in frequency-
domain analysis.

situation according to p = 2 typically occurs in balanced

mixer configurations at low frequencies.

Let us consider the LO power to be varied between O

dBm and +10 dBm in steps of 1 dB, which is a typical LO

drive range when dealing with silicon Schottky-barrier

diodes of a medium barrier height. The pump frequency is

chosen to be fp = 5 GHz.

The adjustment of the harmonic impedances is truncated

and the solution is accepted if the mean harmonic imped-

ance error is

~= -& :.,.<0.001
v—

where

t.JTv– g~v
eu= l–

IDV”ZEMB(VQP) “

(30)

(31)

In Fig. 4, the required computing time on a CYBER

170-835 is plotted against the number of harmonics being

adjusted. If the diode’s parasitic are included in the time-

domain description (Fig. 3), the computing time increases

slightly with increasing p and an increasing number of

harmonics being adjusted.

If the diode barrier is chosen to be the impedance

reference plane (Fig. 1), a stronger increase of computing

time is recognizable, leading to divergence in the cases

p=2; v>14 and p=5; v>7.

It should be pointed out that, when the diode parasitic are

considered part of the frequency-domain circuit, the con-

vergence decreases much more rapidly if the above-men-

tioned cubic sline interpolation is not applied, whereas its

influence is only slight when the diode’s parasitic are

included in the time-domain analysis.

As a result, it has been demonstrated for two sets of

embedding impedances that including the diode’s parasitic

in the time; domain analysis leads to a more efficient and

reliable numerical technique than including them in the

frequency-domain analysis, even though the order of the
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differential equation set is increased. This is due to the fact

that we deal with a more band-limited signal at the junc-

tion plane between the time and frequency domains when

including the parasitic into the time-domain description.

The difference between the two formulations becomes

more pronounced with increasing the number of harmonics

and with increasing the complexity of the embedding net-

work.

Finally, some comments will be made on the choice of

_~~~. As mentioned above, the choice of &~ is arbitraryz

if auxiliary sources are established for all harmonics, in-

cluding the average and first harmonics. If ~~~~ is chosen

to be the lumped-element representation of the impedance

at the first harmonic, then the auxiliary sources U.l and Ufil

are dispensable. In case of a positive reactance of z~~~( UP),

the lumped-element representation has to be chosen as a

series connection of LG~~ and R ~~~, and in case of a

negative reactance of ~~~~( tiP ), the lumped-element repre-

sentation has to be chosen as a parallel connection of G~~~

and C~~~. For these two cases, the time-domain differen-

tial equation sets are different.

It will be shown in Section III that the increased compu-

tational complexity yields an increased convergence rate.

Hence, the choice of ~~~~ as the lumped-element repre-

sentation of the embedding network at the fundamental is

a useful initial guess for solving the nonlinear problem.

In case of a nonconvergent solution, it might be advanta-

geous to make use of this degree of freedom by choosing a

value of ~~~~ which leads to convergence.

A flow chart of the numerical nonlinear analysis is given

in Fig. 5.

HI. CONVERGENCE CONSIDERATIONS

This section is intended to provide a comparison of the

reliability and speed of different numerical techniques for

solving the nonlinear problem.

First, a comparison is given using Kerr’s data [6], which

have also been used in [8] and [12]. Particular attention is

given to the influence of the LO drive level. Then a more

general comparison is made between the different tech-

niques using harmonic impedance sets created by a ran-

dom generator.

A. Corwergence Comparison Using Kerr’s Data

Kerr [6] “has defined a convergence condition

(32)

which must be equal to unity for a converged solution for

all v. Using (32), a convergence diagram has been obtained

for his technique, showing the convergence condition as a

function of the harmonic number after 100 iterations and

300 iterations, respectively (see Fig. 6(a)). Hicks and Khan

[8] took up this diagram in order to compare their voltage

update method with Kerr’s method (Fig. 6(b)). Although

the convergence is improved slightly by using a conver-

gence parameter p, the computation time is of the same

order of magnitude as Kerr’s method. However, the opti-
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Fig. 5. Flow chart of the applied numerical technique

mum convergence parameter (p = 0.025 in this case) is not

given by an analytical expression but has to be found by

some trials, which is not satisfying when analyzing an

unknown nonlinear circuit.

In order to give a comparison with the method presented

in this paper, Fig. 6(c) shows the convergence conditions

after 10 and 15 iterations, according to the numerical

technique of Section II. A rather similar diagram has been

obtained when the junction capacitance is allowed to vary

with the junction voltage (Fig. 6(d)), which is the most

ealistic but critical case when dealing with microwave

lixers incorporating Schottky-barrier diodes.

Assuming convergence if the convergence condition

1–CV<0.5%, ~=(). ..l6 (33)

is fulfilled, Kerr’s method requires about 500 iteration

periods compared with 350 iteration periods of the Hicks

and Khan approach. The technique presented here requires

20 iterations in the case of C,= const and 22 iterations if C,

is varying with the junction voltage.

It is noticeable that convergence is improved by a factor

of ten or more even in the case of a voltage-dependent
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Fig. 6. Convergence diagrams using Kerr’s data [6]. (a) Kerr [6]; 100

and 300 iteration periods. (b) Hicks and Khan [8]; 200 and 300 iteration

periods. (c) This method; ~ = const, 10 and 15 iteration periods. (d)

This method; Cj = < ( u~); 10 and 15 iteration periods.

junction capacitance. The results of Fig. 6 ignore the

important influence of the LO drive level on the conver-

gence rate. In Fig. 7, which is taken from [12], the number

of iterations is plotted against the dc diode current, which

is an inherent function of the LO drive level. If we assume

the bias voltage is adjusted to give an angle of current flow

O = 90”, then the available LO power is approximately

given by the additionally noted abscissa values in Fig..7. It

should be noted that the angle of current flow does not

differ so much from the assumed value of 9 = 90°, espe-

cially in the LO power range of interest, Hence, the ad-

ditionally noted abscissa values give a good approximation

of the available LO power which is necessary to achieve the

dc current values given in Fig. 7. It can be seen that the

methods described in [8] and [12] show a strongly de-

creased convergence rate in the LO drive range of interest
( >0 dBm), whereas the proposed method offers a conver-

gence rate which is nearly independent of the LO drive.

However, it should be mentioned that the convergence

behavior in general depends on the embedding circuitry as

well as on the LO power. A more general consideration of

this problem is given in Section III-B.

115

J+oo
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-5 0 +5 +KI P@~,1 kI*l

Fig. 7. Number of iterations required for solving Kerr’s waveguide

diode mixer (16 harmonics) against dc diode current and available LO
power. o ! Hicks–Khan [8] (after [12]). v: Camacho-Pe&dosa [12]. ●:

This method.

B. Convergence Comparison Using Randomly Generated

Impedance Data

Due to the fact that practical mixer circuits have a wide

range of harmonic embedding impedances, a more general

convergence comparison will be given here. Let

0< {randl,rand2} <1 (34)

be two independent random numbers. Then we can define

a reflection coefficient

~ = lrandlleJ2’’”rmd2. (35)

If a mixer shall be applied in a 50-&? system, we can assume

that every complex reflection coefficient of a 50-fl system

has the same probability, and we can define a correspond-

ing set of random impedances

(36)

Let us restrict the number of harmonics to be within

0<V<4 (37)

which is sufficiently high for the analysis of a real micro-

wave mixer. Now we can calculate any number of harmonic

impedances and take them for a convergence test. For a

particular initiation of both of the random generators, 430

sets of harmonic impedance values have been obtained, as

shown in Fig. 8, yielding 2150 different impedance values

according to (37).

All the following considerations assume the LO voltage

source to be a constant value of UP= 2 V according to an

available LO power of +10 dBm if the source impedance

would be ~~~~( aP ) = 50 0. But as the source impedance

at the first harmonic ~~~~( UP) is also randomly generated,

in fact a wide LO drive range is applied to the diode.

Convergence is assumed if the mean impedance error of
the harmonics v = O. . .4 given by (30) is e <0.005.

Three different numerical techniques will be treated here

in order to compare their rate of convergence.

The first technique is the voltage update method pro-

posed by Hicks and Khan [8]. The lack of an analytical
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Fig. 8. 430 sets of randomly generated harmonic impedances

expression for determining the convergence parameter p

requires excessive computer time if a wide range of p is

taken into consideration. In practice, p is varied between

o.02<p<l (38)

for each harmonic impedance set. If the required number

of iterations is taken only for the optimum value of p

(found by trial), we get a histogram of iteration periods as

given in Fig. 9(a).

The second method under consideration is that proposed

by Gwarek [7], which has been described briefly in Section

II. Using his equations for determining the auxiliary sources

(eqs. (10) and (11)), a histogram of iteration periods is

obtained as given in Fig. 9(b).

Although the rate of convergence is poor (about 60

percent), the mean value of required iteration periods is

decreased compared with Hicks’ and Khan’s method. But

it is important to remember that no trials have to be made

in order to find an optimum convergence parameter.

The third method which shall be considered here in

depth is that proposed in this paper. Particular attention

will be paid to the choice of the source impedance ~~~~ as

mentioned in Section II-C.

If we choose Z_GEN to be the lumped-element representa-

tion Of ZEMB( tip)> a histogram is obtained as given in Fig.
9(c). In the case of choosing a purely resistive &~=

50 L?, we get the histogram of Fig. 9(d). Comparing both of

these histograms, it can be seen that choosing ~~~N to be

the lumped-element representation of the embedding net-

work at the fundamental yields a significantly increased

convergence rate.

Remembering the fact that we have an additional degree

of freedom in choosing ~~EN when analyzing an unknown

nonlinear circuit, the question arises whether its choice can

lead to an increased convergence rate in general. The
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Fig, 9, Histograms of required iteration periods. (a) Hicks and Khan [81,
various convergence parameters, o~timum determined by trial. (b)

Gwarek [7]. (c)”This method, ~~~~ ~ ZE~B( c.+) (lumped-element rep-
resentation of the embedding network at the fundamental).

histogram of Fig. 9(e) is obtained if we use both source

impedance cases alternatively and choose the fastest. Con-

vergence now occurs in 99 percent of cases.
Comparing the histograms of Fig. 9(c) (this method) and

Fig. 9(a) (Hicks and Khan), we have to remember that Fig.

9(a) is obtained by varying the convergence parameter in a

wide range and choosing the optimum value for each

harmonic impedance set. In other words, the presented

histogram of Fig. 9(a) would be obtained without trial if an
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Fig. 9 (cont.) (d) This method, purely resistive &~ =50 Q. (e) Using

the fastest of (c) and (d).
,

analytic expression for the convergence parameter would

be available. Hence, the histogram of Fig. 9(a) has to be

interpreted as an optimistic presentation of the conver-

gence behavior of this method.

Comparing the histograms of Fig. 9(c) (this method) and

Fig. 9(b) (Gwarek), it has been demonstrated that includ-

ing an effective diode impedance at each harmonic when

determining the auxiliary sources (16)–(24) leads to a

significantly improved convergence in general.

The results of this chapter are summarized in Table I,

where the percentage of divergence as well as the mean

value of required iteration periods is given for the methods

under consideration.

In conclusion, it should be pointed out that the proposed

numerical technique is very efficient and reliable. If a

larger number of harmonics is taken into account, the

advantage of this method is much greater. This is because

the magnitude of higher harmonics generated by the diode

decreases and, hence, the small-signal conditions of (23)

and (24) are increasingly fulfilled with an increasing num-

ber of harmonics.

TABLE I

method histogram divergent mean value of

required iteration periods

Hicks-Khan Fig. 9(a) 17% 99.1

Gwarek Fig. 9(b) 43% 39.6

This Method

ZGEN = ‘EMB ( @p ) Fig. 9(c) 5% 24.7

ZGEN =50 Q Fig. 9(d) 10% 23.9
Choosing the fastest

of 9(c) and 9(d) Fig. 9(e) 1% 19.1

IV. LINEAR ANALYSIS

Having determined the voltage waveform at the diode’s

barrier, the instantaneous values of the differential conduc-

tance and capacitance can be calculated by (2) and (3)

leading to their Fourier transforms through

(39)

(40)

When formulating the linearized problem by means of an.

admittance matrix

sum +

signal -

IF -.+

image ~

——

\

. . .. . . . .. . . . .

. . . .

(41)

which can be expressed as

gm= ‘EwI&p”q (42)
~=–w

where the according frequencies are

fm = l~”fp + fIFl- (43)

The coefficients of this conversion matrix can be calculated

from the Fourier transforms of Gj and Cj as follows:

_~_y=Re{Q~_P} –(m@P+@O)Im,{Q~-P}Y

+~[Im{Qm-p} ?-(m~P+%)Re{Gm-P}. (44)

If we choose a description of the linearized problem through

an m x m matrix, this matrix can be reduced to a 2 x 2

matrix if the impedance relations at m – 2 mixing products

are given by
(45)

where Y(m) represents the load admittance at the mth

mixing product (see Fig. 10). Then the power flow between

any of the mixing products can be calculated for a funda-

mental or subharmonically pumped mixer. The only dif-

ference between these two cases is the,, succession of the

matrix reduction, arranged by an exchange of rows and

columns of the conversion matrix. Depending on the



/-

118 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 1, JANUARY 1986

*“’
--4lm& I

higher

tu f. ~ mixing produ J“’’:’$&f-2 A

&y& ‘-zpf””
w I’,..)

MATRIX REOUCTICN

!

“-’O)=’
signal port IF port

Fig. 10. Linearized problem: reduction of the frequency multiport to a
2-port.

matching conditions at the input and/or output port,

different conversion losses can be defined.

If no matching takes place, the transducer conversion

loss can be calculated, given by

power available from signal source
LC =

power delivered to IF load

l(Yll +x(&22 + q2))–y12”y2112
(46)

‘c= ‘4. Re {x(l)} “Re {Z(z) }” 112112

where the ~ij represent the coefficients of the reduced 2 x 2

conversion matrix, Y(l) is the signal source impedance, and

~o) is the IF load impedance (see Fig. 10).

Other conversion losses can simply be calculated from

the coefficients of the 2 x 2 conversion matrix but will not

be considered here.

V. PARTICULARITIES OF BALANCED MIXER

ANALYSIS

In the analysis of a balanced mixer, it is advantageous to

make use of its symmetry properties if we assume the

diodes to be identical. The influence on the nonlinear and

linear mixer analysis will be regarded separately. It will be

shown that a balanced mixer can be treated as a single

diode mixer as previously considered in [4]. In the nonlin-

ear analysis, the impedance conditions given by the embed-

ding network have to be rearranged. The linearized prob-

lem can be solved by a simple change of the coefficients of

the conversion matrix.

1 1,Ji._

B

‘B ‘B
—

Fig. 11. Basic equivalent circuit of a balanced mixer, considering the
nonlinear problem.

A. Nonlinear Analysis of Balanced Mixers

Let us consider an equivalent circuit of a balanced mixer

as sketched in Fig. 11. Due to the opposite polarity of the

diodes, we have

‘II(@Pt) =-iI(upt+ n).
(47)

Expressing iA and i~ in terms of Fourier series yields

W&) = : 5 112.e’2’”’f
(48)

where i~ and i~ are formulated only to be a function of

the current through diode I.

Expressing u~ and u~ in terms of Fourier series yields

%(W) =; 5 %2u-#(2’-1)o’t.
(51)

.V=—m

Calculating the impedances seen by only one diode, we get

in case of the odd harmonics

u—I(2u–1)

I

= z :(2,-1)
= 2&J(2v -1:

–1(2.–1) –B(2U–1)

and in case of the even harmonics

u—12V 1 ~A2v 1

—=–—=~z
I 2 ~A2v

EM,(2VQP)
–12V

Up] (52)

(53)

so we can approach the nonlinear problem by considering

only one diode, with embedding impedances at the diode

plane given by (52) and (53). Note that these impedances

are at a virtual impedance reference plane and do not exist
physically.

B. Linear Analysis of Balanced Mixers

The basic circuitry of Fig. 11 has to be rearranged for

the small-signal case considered in this section. Both the

diodes are to be replaced by their time-varying admittances

as shown in Fig. 12. The time-varying admittances do

contain the solution of the nonlinear problem as given by

the diode’s nonlinearities and the harmonic impedances.

It can easily be verified that the mixing products are

split up in such a way that the even mixing products

m = 2n appear at port B, whereas port A only contains
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Ii., Jm

Ain ykq +Jr)

Fig. 12. Basic equivalent circuit of a balanced mixer, considering the
linearized problem.

odd mixing products (m = 2n – 1). Due to the voltage

‘splitting at port A and the current splitting at port B, (41)

can be written as

[

. . . .

.,. .
— . . . .—

. . . .

. . . .

\

. . . \. . .. . .

~, ~3 i4 .
Y 1’2 1’3 . . . .—1
Y. 1’1 12 .

l’? Y. “1’1 . . .

y; Iy Y. .
. . .
. . .
. . .
. . . )

t- current splitting A (54)voltage sphtt...g

at port B at port A

Including the factors 1/2 into the conversion matrix yields

port B

port A

port B

port A

port B

——

. . .

. .. . .
,., , 2% l’, 2Y’2 1’3 214 . . . .

,.. .

,.. .

,.. .

,!. .

~‘1
u—1

&

LJ_ ~

u-~

Y. Y
~: Y

—2
Y

Y –1 Y –3 ‘“””

. . .. . .. .

. . .

(55)

This final formulation is valid at both of the mixer ports (A

and B) where the conversion matrix is given by the-Fourier

coefficients of a single diode, but describing the frequency

conversion of a balanced mixer.

VI. CONCLUSION

An improved method of analysis of microwave mixers

has been presented, which includes an efficient and reliable

numerical technique for solving the nonlinear pumping

problem. Single-ended and balanced mixers are considered.

The efficiency and reliability of convergence has been

demonstrated by comparing the proposed method with

those which have been published previously.
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